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ABSTRACT: Satellite low-Earth-orbiting (LEO) and geostationary (GEO) imager estimates of cloud-top pressure
(CTP) have many applications in both operations and in studying long-term variations in cloud properties. Recently, ma-
chine learning (ML) approaches have shown improvement upon physically based algorithms. However, ML approaches,
and especially neural networks, can suffer from a lack of interpretability, making it difficult to understand what information
is most useful for accurate predictions of cloud properties. We trained several neural networks to estimate CTP from the
infrared channels of the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Advanced Baseline Imager (ABI).
The main focus of this work is assessing the relative importance of each instrument’s infrared channels in neural networks
trained to estimate CTP. We use several ML explainability methods to offer different perspectives on feature importance.
These methods show many differences in the relative feature importance depending on the exact method used, but most
agree on a few points. Overall, the 8.4- and 8.6-mm channels appear to be the most useful for CTP estimation on ABI
and VIIRS, respectively, with other native infrared window channels and the 13.3-mm channel playing a moderate
role. Furthermore, we find that the neural networks learn relationships that may account for properties of clouds such
as opacity and cloud-top phase that otherwise complicate the estimation of CTP.

SIGNIFICANCE STATEMENT: Model interpretability is an important consideration for transitioning machine
learning models to operations. This work applies several explainability methods in an attempt to understand what infor-
mation is most important for estimating the pressure level at the top of a cloud from satellite imagers in a neural net-
work model. We observe much disagreement between approaches, which motivates further work in this area but find
agreement on the importance of channels in the infrared window region around 8.6 and 10–12 mm, informing future
cloud property algorithm development. We also find some evidence suggesting that these neural networks are able to
learn physically relevant variability in radiation measurements related to key cloud properties.

KEYWORDS: Cloud retrieval; Remote sensing; Satellite observations; Machine learning; Model interpretation and
visualization; Neural networks

1. Introduction

Cloud-top pressure (CTP) is a useful derived product for
characterizing clouds and their variability from satellite meas-
urements. CTP can be used in combination with cloud optical
depth (COD) to distinguish cloud types such as convective
cloud-tops, cirrus, and stratocumulus (Jakob and Tselioudis
2003). When applied to long-term imager records, such an
analysis can be used to identify changes in cloud type (Foster
and Heidinger 2014) or to assess relationships among aerosol
loading and cloud type (Oreopoulos et al. 2017). CTP also
has applications in downstream cloud products such as the
cloud cover layers product relevant for aviation nowcasting
(Seaman et al. 2017; Noh et al. 2017) and the height assign-
ment of derived motion winds (Daniels et al. 2012).

Several approaches have been developed to estimate CTP
from imagers. Many physically based methods rely on differ-
ences between absorbing and nonabsorbing infrared channels
or require the use of radiative transfer models. Early efforts

include Chahine (1974) and Smith and Platt (1978), which
explore the use of CO2-absorbing channels. The Moderate
Resolution Imaging Spectroradiometer (MODIS) CTP
products (Menzel et al. 2008) employ a similar CO2-slicing
approach. Each MODIS CO2 channel has differing amounts
of CO2 absorption, so each is sensitive to different levels of
the atmosphere. As a result, differences among these chan-
nels can be used to infer cloud-top height and pressure.

Inoue (1985) used a split-window (11 and 12 mm) method
to obtain cloud-top temperature for cirrus clouds. Heidinger
and Pavolonis (2009) used a similar approach for estimating
phase, temperature, and COD for cirrus clouds, relying on
multiple channels within the 8–13-mm region. Specifically,
their approach relies on an optimal estimation method
(Rodgers 1976) for the Advanced Very High Resolution
Radiometer (AVHRR). This is later formalized as the Algorithm
Working Group (AWG) cloud height algorithm (ACHA)
for use in operations for the Advanced Baseline Imager
(ABI) and Visible Infrared Imaging Radiometer Suite
(VIIRS; Heidinger and Li 2017). Optimal cloud analysis
(OCA; Poulsen et al. 2012) also uses an optimal estimation
method for several cloud properties, including CTP. OCA
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additionally has the ability to estimate properties of multi-
ple clouds in multilayer scenes (Watts et al. 2011).

Machine learning (ML) has recently gained popularity in
atmospheric science and remote sensing; ML approaches can
often be successful in prediction tasks because of their ability
to exploit complex relationships between multiple features
(predictors) and the corresponding label (predictand). Some
methods can rely heavily on feature engineering, which is the
practice of transforming features to make the relationship
with the label more suitable for a given model. Neural net-
works (NNs) are less dependent on feature engineering due
to their use of successive nonlinear operations. NNs have
proven useful in a variety of atmospheric science applica-
tions, including automated identification of frontal bound-
aries (Lagerquist et al. 2019), detection of severe convection
(Cintineo et al. 2020), and estimation of microphysical prop-
erties of snowfall (Chase et al. 2021).

NNs have also been applied to CTP estimation. Kox et al.
(2014) used a simple NN trained with the Cloud–Aerosol
Lidar with Orthogonal Polarization (CALIOP) to detect
and estimate COD and cloud-top altitude of cirrus clouds
with the Spinning Enhanced Visible and Infrared Imager
(SEVIRI). Håkansson et al. (2018) also trained an NN with
CALIOP to estimate CTP from MODIS measurements.
They compared their NN results with operational algo-
rithms and found large improvement even when using a
small subset of channels. Pfreundschuh et al. (2018) ex-
tended this work to estimate uncertainties in CTP from NN
approaches with a quantile loss function.

Interpretability is a major concern when choosing an NN to
solve a given task. Methods such as CO2 slicing, ACHA, and
OCA are well grounded in the physics of radiative transfer.
One can often attribute the predictions from these methods
to physical aspects of the observations and environment. It
can be relatively difficult to interpret predictions of an NN
that has successive nonlinear operations. Several efforts have
been made to promote the use of various explainability meth-
ods in applications of ML to atmospheric science (McGovern
et al. 2019).

We quantify the importance of each channel in NN CTP
models for one low-Earth-orbiting (LEO; VIIRS) and one
geostationary (GEO; ABI) imager. These models are
trained to match estimates of CTP from CALIOP. Our NN
approach largely builds off that of Håkansson et al. (2018)
and Pfreundschuh et al. (2018). We first perform a short val-
idation for both VIIRS and ABI and include a comparison
with ACHA. We apply several approaches to offer varied
perspectives on the importance of the infrared channels
used in these models. The overall goal of this analysis is to
enhance our understanding of what information is most use-
ful for CTP estimation and is motivated by the substantial
increase in performance offered by NNs over more tradi-
tional methods. We view model interpretability and explain-
ability as an important consideration for applications of
operational CTP products. Furthermore, we hope to inform
cloud property algorithm development and the channel se-
lection of instruments focused on remote sensing of cloud
properties.

Much of the work included in this article is an extension of
the second chapter of the first author’s Ph.D. dissertation
(White 2022).

2. Data

a. CALIOP

CALIOP (Winker et al. 2009) is a spaceborne near-nadir-
pointing lidar, measuring backscatter intensity at 1064 and
532 nm. CALIOP is sensitive to optically thin clouds, making
it a suitable source for the validation of several cloud properties
from passive imagers. A critical choice in this work is whether to
use the 1- or 5-km CALIOP cloud layer products (Vaughan et al.
2009) to train the NN models. The 1-km product has a spatial
resolution most commensurate with both imagers, but the 5-km
product has greater sensitivity to cirrus clouds. Thus, there is a
trade-off between the representation of fine-scale variability in
CTP and the detection of optically thin clouds. Another fac-
tor is that COD is only calculated for the 5-km product and
will only be representative for clouds detected at 5 km.
Cloud-top height estimates are required for the parallax
correction of imager measurements, meaning that the
choice of CTP product affects the selection of collocated im-
ager pixels. We decide to use the 1-km product for the train-
ing and validation of the neural networks, since passive
imager measurements are likely not sensitive to optically
thin clouds detected by the 5-km product that are missed by
the 1-km product.

b. VIIRS

VIIRS is a LEO imager on the Suomi National Polar-
Orbiting Partnership (SNPP) and NOAA-20 satellites.
VIIRS has a nadir spatial resolution of 750 m for 16 moder-
ate-resolution channels that span visible, near-infrared, and
infrared wavelengths. We find coincident observations be-
tween SNPP VIIRS and CALIOP by nearest-neighbor
matching of imager pixels and lidar profiles that occur
within 2.5 min. A parallax correction (Holz et al. 2008) is ap-
plied, using the VIIRS viewing geometry and the cloud-top
altitude reported from CALIOP.

Models trained on coincident observations between VIIRS
and CALIOP can have generalization issues related to view-
ing angles and solar geometry (White et al. 2021). In this data-
set, high-latitude collocations are only made at relatively low
VIIRS viewing angles. Sun glint poses a significant problem
since it is never seen in our collocation dataset (White et al.
2021). To reduce the impact of this issue, we do not include
channels that have solar contributions, which limits the
channels to those with central wavelengths of 8.6, 10.8, and
12.0 mm.

In addition to the native VIIRS channels, we also in-
clude information from the VIIRS–Cross-track Infrared
Sounder (CrIS) fusion channels (Weisz et al. 2017). These
are estimates of absorbing channels created from coarse-
spatial-resolution measurements from CrIS that are convolved
to match the spectral response functions of MODIS. The
fusion channels are mapped to the same resolution as the
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VIIRS M bands by exploiting the variability in the native
VIIRS infrared channels. Others have found improvement in
CTP estimates when including the fusion channels (Li et al.
2020) or CrIS information (Heidinger et al. 2019). They are in-
cluded here since they represent spectral regions not repre-
sented in native VIIRS observations. All bands from VIIRS
and the fusion channels used in this work are shown in Table 1.

We partition our VIIRS–CALIOP collocations into a train-
ing dataset from 2016 to 2018, a validation dataset from 2017,
and a testing dataset from 2019. The spatial and seasonal dis-
tribution of collocations are shown in Fig. 1. Differences in
the spatial distribution between 2019 and the previous years
are due to CloudSat and CALIOP’s exit from the A-Train

(Braun et al. 2019). Gaps in these datasets are primarily due
to the unavailability of CALIOP data and a gap in some CrIS
channels from April 2019 to June 2019.

c. ABI

ABI (Schmit et al. 2017) is an imager on the Geostationary
Operational Environmental Satellite (GOES)-16 andGOES-17
platforms. The infrared channels considered in this work have
a nadir spatial resolution of 2 km. The temporal resolution of
ABI full-disk images can vary depending on the scan mode.
We use the GOES-16 ABI data from 2019, in which the tem-
poral resolution is mainly 10 min.

The GOES-16 ABI and CALIOP collocations are found in
a similar way to those of VIIRS and CALIOP. One difference
is that we relax the time difference requirement to 5 min. We
make this change since the nadir resolution of ABI is more
than twice as large as the VIIRS M bands, and it is less likely
that a cloud observed by CALIOP is advected out of the
matched imager pixel when the area observed by the pixel is
larger. In our models we include all ABI channels without so-
lar contributions, which includes bands 8–16 (Table 2).

The collocations with CALIOP are partitioned into a train-
ing dataset from January 2019 through June 2019, a validation
dataset from July 2019 through September 2019, and a testing
dataset from October 2019 through December 2019 (Fig. 2).

d. NWP data

Numerical weather prediction (NWP) model output fields
are included in our NNs to characterize the environment of
observed clouds. We use the 6-h forecast from the 6-hourly
Climate Forecast System (CFS) 0.58 output (Saha et al. 2014)
and match each set of CALIOP collocations by linearly

TABLE 1. Central wavelengths of the infrared channels
included in the VIIRS models. The left column indicates
whether channels are native VIIRS measurements or derived
from the CrIS. Note that fusion channels are named after
MODIS bands since they are designed to match spectral
response functions of that instrument.

Source/band Central wavelength

VIIRS/M14 8.6 mm
VIIRS/M15 10.8 mm
VIIRS/M16 12.0 mm
VIIRS–CrIS fusion/MODIS 27 6.7 mm
VIIRS–CrIS fusion/MODIS 28 7.3 mm
VIIRS–CrIS fusion/MODIS 30 9.7 mm
VIIRS–CrIS fusion/MODIS 33 13.3 mm
VIIRS–CrIS fusion/MODIS 34 13.6 mm
VIIRS–CrIS fusion/MODIS 35 13.9 mm
VIIRS–CrIS fusion/MODIS 36 14.2 mm

FIG. 1. The distributions of VIIRS collocations with CALIOP for the (a) training, (b) validation,
and (c) testing datasets. Also shown are (d) the seasonal distributions of each.
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interpolating in space and time. The fields used are the temper-
ature and pressure at the surface and tropopause, total precipi-
table water, and the temperatures at pressure levels of 20, 100,
300, 500, 700, and 900 hPa.

The information contained in many of the infrared channels
used is closely related to cloud-top temperature for opaque
clouds. If temperature can be determined, then an NWP tem-
perature profile can be used to infer the pressure level. Most
clouds occur in the troposphere so the temperature and pres-
sure of the tropopause and the surface might serve as upper
and lower bounds. Total precipitable water might serve as an in-
dicator for optically thick cloud cover and provide information
on the expected amount of water vapor absorption. We ex-
perimented with including relative humidity, and a greater
number of pressure levels (not shown). These did not sub-
stantially help model performance, and therefore they were
not included. Our resulting temperature profile has a similar
sparsity to Håkansson et al. (2018).

3. Neural network training and validation

a. Neural network details

We use neural network with a quantile loss function that
draws from Pfreundschuh et al. (2018), which demonstrated
the ability of quantile regression NNs to estimate uncertain-
ties for CTP. The quantile loss is shown in Eq. (1) where L is
the loss for a prediction ŷ for quantile t and where y is the
CALIOP CTP. When multiple quantiles are estimated, L
can be averaged over multiple values of t. The implications
of Eq. (1) are that for larger quantiles overestimates are pe-
nalized more than underestimates (and the opposite for
lower quantiles):

L(t, y, ŷ) � (1 2 t) y 2 ŷ| | for y# ŷ
t y 2 ŷ| | for y . ŷ

:

{
(1)

Each neural network has four fully connected layers con-
sisting of 64, 32, 16, and 9 units. These values were deter-
mined by starting with the architecture used in Håkansson
et al. (2018). We found a decrease in mean absolute error of
3.7 hPa (from 65.3 to 61.6 hPa) on the VIIRS validation data-
set after roughly doubling the number of units used in Håkansson
et al. (2018) and adding an additional layer. Further increases in
the number units increased the computational expense but did
not substantially improve performance. For example, an ar-
chitecture with five layers of 128, 64, 32, 16, and 9 units de-
creased the mean absolute error only by 0.2 hPa, which is
within the range of MAE values obtained by using different
random weight initializations.

All layers except the last are followed by rectified linear
unit (ReLU) activations. The last layer represents the nine
evenly spaced quantiles we estimate (t ranging from 0.1 to

TABLE 2. Central wavelengths of the infrared channels included
in the ABI models.

ABI band Central wavelength

8 6.2 mm
9 6.9 mm
10 7.3 mm
11 8.4 mm
12 9.6 mm
13 10.3 mm
14 11.2 mm
15 12.3 mm
16 13.3 mm

FIG. 2. As in Fig. 1, but for ABI collocations.
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0.9 in increments of 0.1) and has no activation function.
Predictions for CTP are obtained from the 50th quantile. A
frequent problem in quantile regression is the crossing of
quantiles since there is no mechanism to ensure that the
curves do not overlap. In our datasets, we observe crossing
quantiles in less than 2% of predictions that we judged to
be small enough to ignore for our applications. Other
works have suggested solutions for minimizing the crossing
of quantiles (Cannon 2018).

The Adam optimizer (Kingma and Ba 2017) is used start-
ing with a learning rate of 5 3 1023. This learning rate was
chosen by testing values between 1 3 1025 and 1 using a
learning rate range test (Smith 2017). The batch size was in-
creased from 250 used in Håkansson et al. (2018) to 5000
where the time taken for each epoch stopped decreasing.
The loss is evaluated on the validation dataset after each ep-
och. The learning rate is reduced by a factor of 10 when the
validation loss has not decreased for the last five epochs to a
minimum of 1 3 1026. Training is stopped when the valida-
tion loss has not decreased for the previous nine epochs.
These values are subjectively chosen on the basis of the
number of epochs needed for the loss to stop decreasing af-
ter each learning rate reduction.

The inputs of each NN include the infrared channels speci-
fied in Table 1 for VIIRS and Table 2 for ABI. In addition to
these values and the NWP information, we include several
spatial metrics derived from a 5 3 5 pixel array surrounding
the central pixel where the prediction is made. These spatial
metrics include differences between the central pixel and both
the coldest and warmest pixels and the standard deviation of
all 25 pixels calculated for all channels. In total, the VIIRS
NN includes 51 inputs, and the ABI NN includes 47 inputs.
All inputs are standardized by subtracting the mean and di-
viding by the standard deviation calculated from the training
dataset. The CALIOP observations of CTP are divided by
1000 hPa, meaning predicted CTP values typically lie between
0 and 1. Standardizing the CALIOP observations had no im-
pact on performance, but consistently reduced training time
by several epochs. Note that there are several hyperparameter
decisions that we did not explicitly optimize for including the
intermediate activation functions, the specific sets of esti-
mated quantiles, the use of different learning rate schedules,
and the early stopping criteria. It is possible that better results
could be achieved if these decisions were included in a more
formal hyperparameter search. All hyperparameter decisions
are made using the mean absolute error of the estimate for
the 50th quantile on the validation dataset.

The NNs are trained using TensorFlow (Abadi et al. 2016)
on a Quadro RTX 6000. The following analysis was per-
formed using the NumPy (Harris et al. 2020), SciPy (Virtanen
et al. 2020), and Matplotlib (Hunter 2007) software libraries.

b. Neural network performance evaluation

Because of our choice of the 1-km CALIOP CTP product,
when we analyze with respect to optical depth, we can only
compare instances in which the 1- and 5-km products have
identified roughly the same cloud layer. Otherwise, one risks

using the optical depth of a cloud to characterize the cloud-
top pressure of another cloud lower in the atmosphere.
Where we use optical depth, we limit the collocations to
where the products agree on CTP within 150 hPa. For both
imagers this removes the overall number of collocations by
16%. The optical depth and location of these collocations that
are temporarily removed are shown in Fig. 3. Clouds with op-
tical depths less than 0.5 are primarily affected with most of
these removed profiles occurring in the tropics. Fewer than
2.5% of clouds with an optical depth near 1 are removed by
this requirement.

The performance of the VIIRS NN is evaluated on our test-
ing dataset in Fig. 4. The 99% confidence intervals for mean
absolute error (MAE) and bias (Figs. 4a,b) are formed by
1000 bootstrapped samples of our testing dataset. A two-sided
t test indicates significant differences (p values less than 0.001)
between the NN and ACHA at all levels and COD ranges,
except the difference between 1000 and 950 hPa at COD
values between 3 and 30. MAE is, as expected, larger for
clouds with low COD. ACHA appears to struggle with CTP
estimation at the midlevels between 700 and 500 hPa. The
MAE for the entire testing dataset is 58.1 hPa for the NN
and 109.3 hPa for ACHA. The NN shows statistically signifi-
cant improvement in most regions especially at the mid- and
high latitudes (Figs. 4d,e).

Both approaches have issues with biases with respect to
CALIOP in their predictions of CTP (Fig. 4b). The NN sys-
tematically fails to predict extreme values of CTP near the
surface and places them too high in the atmosphere. The op-
posite problem occurs at the upper levels but is less exagger-
ated for clouds with high COD. Low COD clouds are most
affected, with large positive biases above the 700-hPa level.
ACHA has similar, but more extreme behavior, for clouds
with low COD. ACHA has different signed biases as a func-
tion of CTP for clouds with COD greater than 1. This results
in ACHA placing these clouds between 600 and 900 hPa too
low in the atmosphere, and clouds with COD greater than
3 between 600 and 300 hPa too high in the atmosphere.
This results in a tendency for ACHA to predict a lower fre-
quency of clouds in the midlevels and could be a contribu-
tor to the larger MAE at these levels. In terms of location,
the bias patterns are similar between the NN and ACHA
(Figs. 4f,g), with a negative bias at the low latitudes and a
positive bias at higher latitudes, but ACHA’s mean bias is
typically of larger magnitude.

A similar analysis is done for the ABI NN (Fig. 5). The
evaluation of the ABI NN shares many characteristics with
that of the VIIRS NN. One difference is that optically thin
clouds at the highest levels (,150 hPa) have larger errors
than does the VIIRS NN. Similar issues with the biases occur
for ABI with a larger positive bias for optically thin clouds at
the upper levels. The spatial patterns of MAE are similar to
those of VIIRS. The spatial pattern of the mean bias differs
greatly, as the ABI NN typically has a positive mean bias re-
gardless of location. The MAE for all ABI and CALIOP col-
locations is 61.6 hPa. While this is similar to VIIRS, the two
MAE values are not directly comparable because of the dif-
ferences in the areas and meteorological conditions viewed.
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A comparison between the ABI NN and ACHA is not per-
formed because of the computational expense of running
ACHA for the large number of ABI images used. However,
we feel that the VIIRS NN/ACHA comparisons above and
past evaluations of neural network CTP models (Håkansson
et al. 2018; Kox et al. 2014) sufficiently justify an exploration
into their interpretability.

c. Prediction uncertainty assessment

The application of quantile regression for obtaining uncertainty
information in NN CTP estimation has been evaluated by previ-
ous work (Pfreundschuh et al. 2018). We perform a very brief
assessment of the calibration of the predicted distributions from
the estimated quantiles for the VIIRS and ABI NNs to ensure
we can achieve reasonably similar results. To construct cumula-
tive distribution functions (CDFs) we also use the approach by
Pfreundschuh et al. (2018) and extend the first and last quantiles
to 0 and 1, respectively, using a piecewise linear interpolation.

Figures 6a and 6d show a probability integral transform
(PIT; Dawid 1984) histogram that indicates the frequency of
observations as a function of the predictive CDF. The PIT his-
togram and can be used to assess the calibration of the pre-
dicted distributions and is created by calculating the quantile
that the observation from CALIOP attains using the CDF
predicted by each neural network. A perfectly calibrated
model has a uniform frequency of observations across the
CDF. An overconfident model has higher proportion of

observations occurring near 0 and 1 (indicating that the pre-
dicted distributions are too narrow), and an underconfident
model has a higher proportion of observations occurring near
a value of 0.5 in the CDF (predicted distributions are too
wide). The VIIRS NN appears to estimate CDFs that are too
narrow evidenced by the higher frequencies at the tails and
the lower frequencies at the middle of the CDFs. The ABI
NN appears well calibrated with only small differences in ob-
served frequencies throughout. Figures 6b and 6e show simi-
lar information presented differently and again confirm that
the VIIRS NN predicts distributions that are slightly narrow,
but the ABI distributions accurately capture the range of ob-
served values. Figures 6c and 6f illustrate how the width of
the predicted distribution (illustrated by the standard devia-
tion of predicted quantiles) corresponds to a wider range of
errors observed when comparing with CALIOP. Altogether,
Fig. 6 shows that the predicted distributions from each of
these neural networks are typically well calibrated and corre-
spond to the observed errors in an intuitive manner.

4. Explainability assessment

Many methods for explaining predictions from ML models
have been proposed. Some of these approaches offer the ability
to provide local explanations, which attempt to describe how in-
dividual features contribute to a single model prediction. This is
in contrast to global explanations, which are computed over a

FIG. 3. For (top) VIIRS with CALIOP and (bottom) ABI with CALIOP: (a),(c) The
fraction (red lines) of collocations that are removed by applying the requirement that the
1-km and 5-km CALIOP products agree within 150 hPa. Also shown are the mean differ-
ences (black lines) between the two products as a function of optical depth. (b),(d) The
fraction of collocations removed on a 58 3 58 latitude/longitude grid.
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set of predictions. We attempt to give different perspectives on
feature importance using several methods for explaining NN
CTP models.

A key challenge is that many of the features used in these
models are correlated with one another. This issue in statisti-
cal models is often referred to as multicollinearity and affects
several aspects of model development and interpretation
(Alin 2010; Farrar and Glauber 1967; Dormann et al. 2013).
Collinear features contribute to increases in the variance of
model parameter estimates (Alin 2010; Daoud 2017). They
also hamper interpretability (Wheeler and Tiefelsdorf 2005)
since feature importance is often shared between collinear
features, which can lead to misleading conclusions about their
overall ranking relative to other features. Thus, a difficulty we

struggle with throughout this analysis is whether a feature is
deemed important because it has physical significance related
to the task or whether it is correlated with another feature
that does. Due to the variance in model parameter estimates
as a result of multicollinearity, the following metrics are com-
puted over five models with randomly initialized weights. In
our case, these models have negligible differences in overall
performance (within 1.5 hPa MAE), but the exact dependen-
cies on particular features can be different.

a. Sequential backward selection

Sequential backward selection (SBS) is commonly used to
find reduced feature sets with minimal reduction in model

FIG. 4. (a) The MAE of the NN (black) and ACHA (red) for several values of COD. (b) The bias of the NN and ACHA relative to
CALIOP over the same values of COD. In (a) and (b), 99% confidence intervals are in lighter shading but are often obscured by the
mean values because of the narrow intervals. (c) The number of collocations occurring between CALIOP and VIIRS. (d),(e) The MAE
on a 58 3 58 latitude/longitude grid. Stippling in (d) and (e) indicates that the respective approach has an improvement over the other that
is statistically significant with a p value less than 0.001 at the grid point. (f),(g) The mean bias on the same grid.
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performance. The approach starts with selecting a single fea-
ture, retraining the model without the feature, and recording
the reduction in model performance. This is done for all fea-
tures, and the feature that yields the smallest decrease in per-
formance is removed. This process is repeated until the
number of desired features is reached. SBS can also be used
to understand which feature has the most unique and useful
information for the task a model is trained for. A large in-
crease in MAE after a feature is removed implies that the

feature has unique information relevant for CTP estimation
that the NN was not able to find in other features. A low in-
crease in MAE after a feature is removed could imply that
the feature is not useful for CTP estimation in the NN, or that
the useful information the feature contained was not unique
to the feature and could be obtained from others.

To isolate the value of a given channel’s information, we per-
form a full SBS, iterating over conceptually linked groups of
features associated with each channel (Figs. 7 and 8). Removing

FIG. 5. (a) The MAE for the NN over several ranges of COD. (b) The bias over the same ranges of COD. In (a) and (b), 99% confi-
dence intervals are in lighter shading but are often obscured by the mean values because of the narrow intervals. (c) The number of collo-
cations between ABI and CALIOP. Also shown are the (d) MAE and (e) bias of the neural network on a 58 3 58 latitude/longitude grid.
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groups of features allows us to determine feature importance as
a function of spectral band. Otherwise, a feature’s relevant in-
formation for the estimation of CTP could also be found in
other features from the same channel. This also allows us to
quantify the contribution of NWP model output to the NN’s
performance. Satellite estimates are often useful because they
are based on observations (as compared with an NWP model
forecast). Thus, quantifying the contribution of NWP and com-
paring it with that of the actual observations could be one way
of determining how useful or reliable a given estimate of CTP
is, in addition to the uncertainty estimates provided by the neu-
ral network. However, it is worth noting that the NWP group
contains a larger number of features than groups associated
with each channel.

The feature group SBS analysis shows many intuitive char-
acteristics of CTP estimation. For VIIRS (Fig. 7), these results
imply that the 8.6-mm channel is the most important channel
followed by 10.8 and the 12.0. The 8.6-mm channel, in con-
junction with window channels such as 10.8 mm, could be
used to identify cloud phase (Strabala et al. 1994) and place a
cloud in the upper or lower portion of the troposphere. The
most useful fusion channels appear to be the 6.7 and 7.3 mm,
which contain information about water vapor absorption and
might be useful for placing a cloud above or below the bulk of
the water vapor in a given scene. The low increases in MAE

of CO2 fusion channels (13.3–14.2 mm) are surprising given
that CO2 slicing has proven a useful approach for CTP
estimation.

In most cases, a model’s reliance on an individual channel
increases when the number of channels decrease. However,
there are a few exceptions to this generalization for VIIRS, in-
cluding the impact of removing information from 8.6–10.8-mm
channels once the 13.9- and 14.2-mm channels are removed
(Fig. 7, rounds 3–5). NWP information ranks highly in the first
few rounds, and as channels are removed, we see an increasing
reliance on NWP information. This indicates that the usage of
NWP information changes as a function of the channels in-
cluded in an NN.

The same analysis indicates a few similarities for ABI (Fig. 8).
The 8.4-, 10.3-, and 12.3-mm channels all have relatively large in-
crease in MAE when tested in the first several rounds. Unlike
VIIRS, the 13.3-mm channel ranks fairly high. On ABI, the
11.2-mm channel, ozone channel (9.6 mm), and strongly ab-
sorbing water vapor channels (6.2–7.3 mm) do not benefit
the model strictly in terms of MAE.

In the first round, NWP information appears to be more es-
sential for accurate predictions from ABI relative to VIIRS.
This impact becomes more similar after the CO2 channels
(with wavelengths 13.3 mm and above) are removed from the
VIIRS models. VIIRS appears to rely more heavily on

FIG. 6. For (top) VIIRS and (bottom) ABI: (a),(d) The observed frequency of CALIOP observations as a function of the value of the
predicted CDF from the predicted quantiles. (b),(e) The fraction of CALIOP observations that fall within the prediction intervals derived
from the predicted quantiles. Dashed lines in (a), (b), (d), and (e) indicate a well-calibrated model. (c),(f) The distribution of abso-
lute errors between the neural networks and CALIOP for several ranges of the standard deviations of the predicted quantiles that
fall within 30-hPa bins specified on the x axis. The middle orange line represents the 50th percentile, box edges represent the 30th
and 70th percentile, and the whiskers represent the 10th and 90th percentile of absolute error (left y axis) with respect to CALIOP.
The cumulative distribution function is shown in blue and represented on the right y axis.
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information from the 8.6-mm channel. The impact of remov-
ing the lone CO2 channel on ABI (13.3 mm) is different than
the impact of removing the four fusion CO2 channels for
VIIRS. For instance, in round 7 after the 13.3-mm channel is
removed, the MAE from removing the 12.3- or 8.4-mm chan-
nel is nearly tripled on ABI. After removing the fusion CO2

channels from VIIRS, it is mostly the impact of NWP infor-
mation, which is increased.

Figures 7 and 8 make it clear that similar performance can
be achieved for these CTP models with reduced feature sets.
Ignoring differences in reliance on NWP information, similar
models could be created using the feature sets after round 5
for both instruments. We continue to use the full feature set
to keep the latter experiments consistent.

b. Neural network explanation methods

Next, we attempt to characterize these models using ap-
proaches specific to NNs that offer local explanations. Both
local explanation methods we describe below are relatively
complex in comparison with backward selection. We attempt
to provide a concise description of how these approaches
work in general terms, but if a detailed explanation is desired,
we refer the reader to their corresponding references.

The first method used is layerwise relevance propagation
(LRP; Bach et al. 2015). LRP is a popular method for model

attribution and has been used to explain models in applica-
tions such as radar reflectivity estimation from satellite im-
agers (Hilburn et al. 2021) and for detecting common change
patterns among climate models (Barnes et al. 2020). LRP can
be generally described as computing a backward pass through
an NN, starting with the activations at the last layer. A predic-
tion score is propagated backward through each layer of the
model and projected onto the dimensions of the original input
at the first layer. There are several different propagation rules
that dictate how the prediction score is distributed to the units
of each layer. In our application, we use the epsilon rule for all
layers, which adds a small positive value to the denominator of
the relevance propagation rule to improve numerical stability.

The second method we use is Shapley additive explana-
tions (SHAP; Lundberg and Lee 2017), which is based on
the Shapley value from cooperative game theory (Shapley
1953). Similar to the relevance from LRP, Shapley values
attempt to attribute responsibility to features for a given
prediction. In the original SHAP paper, a model-agnostic
approximation of Shapley values is introduced, called kernel
SHAP. However, this approach ignores information available
in the structure of the neural network that could be useful for
improving computational performance. The same work intro-
duces an NN-specific approach, Deep SHAP, that leverages
principles from DeepLIFT (Shrikumar et al. 2017). Specifically,

FIG. 7. The results of a backward selection performed on features linked to each channel used
in the VIIRS CTP models. This figure is most easily interpreted by considering each column
from left to right. Each column represents a single round of backward selection. The inset plot
shows the MAE of a model that includes all remaining features present in a given column. In
each round, a feature’s impact is tested by training five identical but randomly initialized models
without that feature and recording the MAE. The value in each box represents the mean in-
crease in MAE (of the three best-performing models) relative to a model that includes all fea-
tures present in a column. Note that the feature group that increases MAE the least in a given
round is permanently removed from the model and is no longer tested in the following rounds.
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Deep SHAP takes advantage of the per-node attribution rules
used in DeepLIFT.

These methods were selected on the basis of their recent
popularity in the atmospheric sciences and broader machine
learning communities and the relative ease-of-use of open-
source implementations. SHAP has several advantages over
LRP including producing featurewise additive explanations
that sum to the value of the model’s prediction. SHAP also
uses a dataset-dependent sample as reference values for
producing explanations. Both LRP and SHAP can produce
signed attributions, according to whether an input feature
acted to increase or decrease the prediction. We note that
SHAP explanations took several orders of magnitude longer
than LRP to produce feature attributions, which likely pre-
vents the possibility of using SHAP to explain all predictions if
these neural networks were implemented in a near-real-time
application for VIIRS or ABI. LRP, on the other hand, could
produce explanations in roughly the same amount of time it
takes to make a prediction. Mamalakis et al. (2022) provides a
more thorough comparison of LRP, SHAP, and many other
NN explanation approaches,

In itself, interpreting the output from local explanation
methods can be a difficult task. We attempt to simplify this by
standardizing the local explanations. We take the absolute
value of the LRP relevance and SHAP values and express
them relative to the feature with the greatest value for each
input example. For each prediction, each feature has relative
importance ranging from 0, which implies it was not impor-
tant, to 1, which implies the feature was the most important
or tied with the most important.

Figures 9 and 10 show the global relative feature impor-
tance calculated over conceptually linked groups of features.

These values are calculated by summing the absolute value of
the LRP and SHAP attributions for each group of features
and dividing by the value from the largest group. The 8.4-mm
(ABI) and 8.6-mm (VIIRS) channels are suggested to be the
most important channels for CTP estimation. LRP and SHAP
assign low relative feature importance to the ozone channels
around 9.7 mm on both instruments and the 6.7- and 7.3-mm
channels on VIIRS. Both methods rank spatial information
lower than spectral information for both imagers. Both meth-
ods also rank spatial metrics from fusion channels lower than
those from native features, despite there being more than
double the number of features from the fusion channels.

Despite the agreement on some broad points, there are a
few differences between LRP and SHAP. In general, the rela-
tive feature importance values from LRP are more distributed
across features relative to SHAP, which gives sparser explana-
tions that emphasize the most important features. The high
rankings of the 8.4- and 8.6-mm channels from SHAP imply
that most explanations are dominated by these channels.
Both methods agree on the relative ranking of most features,
with the significant exception of NWP data for both sensors,
where LRP reports values that are more than 2 times that of
SHAP. SHAP’s attribution here also contrasts with the back-
ward selection results that imply that NWP information is
very useful for CTP estimation.

There are several other differences between what informa-
tion these methods suggest that the NNs use in comparison
with backward selection. LRP reports that the fusion chan-
nels, ignoring spatial metrics, have a roughly similar value
of relative feature importance as the VIIRS native channels.
However, when we remove all fusion channels from the
VIIRS models, MAE only increases by less than 5 hPa, which

FIG. 8. As in Fig. 7, but for the ABI CTP models.
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is less than removing information from the 8.6- or 10.8-mm
channels. Of all fusion channels, the 6.7- and 7.3-mm channels
appear to the have the largest impact when removed during
backward selection but are ranked fairly low when compared
with 13.3 mm, which both LRP and SHAP rank as the most
important fusion channel.

c. Local explanation clustering

Next, we explore the local explanations for these models.
We attempt to find conceptually similar explanations among
the local attributions. We then analyze these explanations as a
function of their dominant features, CTP, cloud-top phase,
opacity, and location. We find these explanations by using a
k-means clustering (from scikit-learn, version 0.24; Pedregosa
et al. 2011) on the local attributions. Thus, each imager–
CALIOP collocation belongs to a specific cluster. For conci-
sion, we only perform the following analysis using LRP. We
specify four clusters, but do not conclude that it is the optimal
number, nor that there are discrete clusters at all. We use the
clustering to partition the local explanations into more homo-
geneous groups and visualize differences among them. The
motivation for this analysis is to help understand the kinds of
relationships that might be used in the neural networks in pre-
dicting CTP for different types of clouds. Figure 11 shows the
clustering analysis performed for VIIRS and describes each
cluster in terms of the relative feature importance for predic-
tions that belong to each cluster. Figure 11 also illustrates the

fraction of all collocations belonging to each cluster in terms
of CTP, cloud-top phase, opacity, and location.

VIIRS cluster 1 has high feature importance in the 8.6-mm
channel where it was the leading feature in most predictions.
Cluster 1 also had high feature importance in the 10.8-mm
channel and low importance in fusion channels. It represents
a common explanation across all locations and favors opti-
cally thin clouds at all levels regardless of cloud phase. VIIRS
cluster 2 has the highest feature importance in the 12.0-, 6.7-,
and 7.3-mm channels, and a high importance in fusion CO2

channels. It primarily represents upper-level liquid clouds and
upper-level opaque ice clouds. Cluster 2 is globally distributed
but is not often found in areas dominated by lower- and mid-
level cloudiness. VIIRS cluster 3 has high feature importance
in the 13.3-mm channel, spatial metrics from the 12.0-mm
channel, and NWP surface temperature. It is the dominant ex-
planation for lower-level liquid clouds and explains a large
fraction of clouds occurring off the western coast of South
America, the southwestern coast of Africa, and regions where
persistent low-level cloudiness is common. VIIRS cluster 4
has high feature importance for spatial metrics, NWP infor-
mation, and moderate values for the fusion CO2 channels.
It is common in many locations but is frequent over the
Southern Ocean. Given the dependence on spatial metrics,
and lack of a clear relationship with cloud properties, we ex-
pect that cluster 4 might primarily represent cloud edges
where the spatial metrics will take on particularly large values
(see section 4d).

Figure 12 illustrates a similar analysis for ABI. Overall, the
clusters appear to be less sensitive to opacity and more sensitive
to cloud-top pressure. Some similar patterns exist in the spatial
distribution of the clusters when comparing ABI with VIIRS.

ABI cluster 1 shows importance in channels with water vapor
absorption (6.2, 6.9, and 7.2 mm), many spatial metrics, and NWP

FIG. 10. As in Fig. 9, but for ABI NNmodels.FIG. 9. Relative feature importance for different groups of fea-
tures calculated over five VIIRS NN models. (a) Channel bright-
ness temperatures are separated from their associated spatial met-
rics and fusion channels from native VIIRS channels. (b) Features
are separated based on their associated channel. Error bars are
computed from the maximum and minimum relative feature im-
portance of LRP and SHAP values computed for five models with
different weight initializations.
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information. Cluster 1 primarily represents clouds at all levels
but slightly favors low-level opaque ice clouds. ABI cluster 2 ex-
plains a large fraction of low-level liquid clouds and relies heavily
on the 12.3-mm channel where it is the leading feature for over
90% of examples. ABI cluster 2 is frequent in areas with low-
level cloud cover. ABI cluster 3 has the largest feature impor-
tance in the 8.4-mm channel, where it is frequently the leading
feature. It is present at various levels, slightly favoring optically
thin liquid clouds and mostly occurs at the tropics. ABI cluster 4
has high feature importance in the 6.2-, 6.9-, 7.3-, and 8.4-mm
channels and an otherwise low importance in spatial metrics and
NWP data aside from 300 hPa temperatures. It describes the vast

majority of predictions for ice clouds between 600 and 200 hPa
and is primarily located at the high latitudes.

There are a few loose similarities between the clusters iden-
tified in the local explanations of both the ABI and VIIRS
models. One such similarity is between VIIRS cluster 3 and
ABI cluster 2. Both of these groups show at least moderate
importance in the 12.0-mm (VIIRS), and 12.3-mm (ABI) chan-
nels and explain a large proportion of low-level water clouds
in similar locations. Both models also have one cluster associated
with feature importance in spatial information (ABI cluster 1
and VIIRS cluster 4) that occurs somewhat frequently in the
high latitudes and more moderately in the tropics. Another loose

FIG. 11. Cluster analysis of relative feature importance values calculated from LRP for the VIIRS CTP models. (a) The distribution
of feature importance values for each cluster where the black middle line, box edges, and whiskers represent the 50th, 30th/70th, and
10th/90th quantiles of each feature. Also shown are the distributions of each cluster with respect to CTP and optical depth of the uppermost
cloud for (b) ice clouds and (c) liquid clouds. (d),(e),(f),(g) The spatial distribution of each cluster on a regular 58 grid and the proportion of
collocations falling within each cluster, listed above the maps. Note that the color bars represent slightly different ranges and are chosen to
emphasize spatial variability within each cluster. The analysis in this figure is subject to the requirement described in Fig. 3 because of the
use of optical depth. Some fusion-channel spatial metrics are not shown in (a) because of very low values and to ease visualization.
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similarity can be found between VIIRS cluster 1 and ABI cluster 3,
which have high importance in the 8.4- and 8.6-mm channels but
have very different spatial distributions.

d. Local explanation example

In an effort to contextualize the LRP attributions and illus-
trate potential relationships between VIIRS cluster 4 and cloud
edges, we calculate relative feature importance from LRP for
an example VIIRS scene centered over 558S, 1008E (Fig. 13).
The LRP values are standardized in the same way and are re-
ported as a function of the same conceptual groups in Fig. 9a.
The neural network is not capable of cloud detection, so predic-
tions are provided in all pixels regardless of whether there is a
cloud present.

Shown in Figs. 13a and 13b is 10.8-mm channel from VIIRS
and the predictions of CTP made by the NN. The width of the
predicted distribution can be large near edges of clouds that
have high contrast with the surface (Fig. 13c). The predicted
distributions are also wider where upper-level clouds overlap

with midlevel clouds (Fig. 13c, lower left). In this scene, NWP
information is most important for mid- and lower-level
clouds. Native spectral observations (Fig. 13e) are most im-
portant for upper and lower-level clouds, but there is a strong
decrease in the importance of native spectral observations
near clouds edges (Fig. 13e, right). These low values of the
relative feature importance of native spectral observations
near cloud edges correspond to large importance of the spa-
tial metrics from native VIIRS observations (Fig. 13g). The
relative feature importance for spectral fusion feature group
is largest for lower- and midlevel clouds and has more moder-
ate values for upper-level clouds. The feature importance of
the spatial metrics from fusion channels (Fig. 13h) appear to
have the lowest values in this scene overall and only have
moderate impact for more spatially uniform low-level clouds
and very low importance for upper-level clouds.

We see a few potential explanations for the importance of
spatial metrics around cloud edges. At cloud edges, spectral
features can be difficult to interpret because of the possibility
of a pixel being only partially cloudy and the resulting

FIG. 12. As in Fig. 11, but for the ABI CTP models.
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brightness temperature being a mixture of a cloud and an un-
obscured view of the surface. Spatial metrics such as the dif-
ference between the central pixel and the 5 3 5 pixel
maximum and minimum could provide information on the
brightness temperature of a nearby fully clear pixel and a
nearby fully cloudy pixel. A second explanation could be that
this is an artifact of the way that our dataset is collected.
CALIOP observations are not typically made at the exact
same time as VIIRS. This time difference might allow for the
cloud observed by CALIOP move outside the view of collo-
cated imager pixel. Spatial metrics might indicate where this
is likely, and this behavior could alternatively be symptom of
training to match an imperfect label.

5. Discussion

The efforts to explain the models in this work give slightly
different perspectives on feature importance for NN CTP esti-
mation. In many cases, this is expected when comparing SBS
with LRP and SHAP. Observing a small increase in error

when removing a set of features does not necessarily imply
that they are not useful for CTP estimation. It instead might
be an indicator that the information is not unique to a feature.
This may be the case for the fusion CO2 channels in the
VIIRS model. When removed through backward selection
(Fig. 7), they yield only small increases in model error; how-
ever, the LRP and SHAP attribute a moderate amount of fea-
ture importance to them. This indicates that while fusion CO2

channels may be useful for CTP estimation, similar perfor-
mance, in terms of MAE, can be attained without them. How-
ever, when comparing SBS with the LRP and SHAP, it is
important to note that SBS ultimately describes a different set
of models. The backward selection performed involves fitting
models with access to fewer and fewer features. Thus, the
rankings of feature importance in the latter rounds may be-
come less consistent with those from LRP and SHAP due to
this.

Other differences are less easily explained, such as the differ-
ences in importance of NWP information between LRP and
SHAP. LRP assigns a large relative FI to NWP information

FIG. 13. Example of CTP predictions for the VIIRS scene centered over 558S, 1008E. (a) The 10.8-mm infrared channel. (b) The esti-
mates of CTP from the 50th quantile. (c) The width of the 80% prediction interval constructed from the 10th and 90th quantiles. Also
shown is the LRP relative feature importance for the (d) NWP, (e) spectral native, (f) spectral fusion, (g) spatial native, and (h) spatial
fusion groups discussed in the text.
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and is in agreement with the first round of the SBS feature
group analysis for both instruments, indicating that this might
be a failure of SHAP’s attribution. A few potential sources of
the differences between LRP and SHAP could be rooted in our
choice of model architecture, the nature of our prediction task,
and choice of LRP rules. LRP was initially developed to explain
the output of convolutional neural networks trained for image
classification (Bach et al. 2015). It is unclear how well these
attributions generalize to regression problems or noncon-
volutional neural networks like ours. Similarly, during de-
velopment we noticed slight differences in attributions
depending on the exact LRP propagation rules used (Montavon
et al. 2019), but qualitatively similar takeaways overall (not
shown).

Despite discrepancies in the importance of a few features,
there is still some agreement between approaches. All ap-
proaches agree that the 8.4- and 8.6-mm channels are useful in
the estimation of CTP. Similar agreement between methods is
found for the importance of the 10.8- and 11.2-mm channels
for VIIRS and the 12.3-mm channel for ABI. Intuitively, all
approaches place a much greater emphasis on the brightness
temperatures, which have a more direct physical relationship
to cloud-top pressure relative to spatial metrics.

Several methods also agree on the relative unimportance of
particular features. These include the ozone channels from
both instruments, the 6.2-mm ABI band, which is sensitive to
upper tropospheric water vapor, and the spatial metrics calcu-
lated from the VIIRS–CrIS fusion channels. In this case it is
helpful to remember that the fusion channels are derived
from the relatively coarse CrIS observations and interpolated
using infrared channels from VIIRS. It is plausible that fine-
scale spatial variability on the scale of 3.75 km (the edge
length of 5 VIIRS pixels at nadir) is not well represented.
Regardless of disagreement between LRP and SHAP, we
can conclude that the VIIRS–CrIS fusion channels only
have small benefit when included in the VIIRS NN since
they increased MAE only by roughly 5 hPa (Fig. 7) when all
are removed. However, several fusion channels indicated no
benefit after removal (Fig. 7, rounds 1–5).

One point made earlier in this paper is that removing these
channels had the effect of increasing the reliance on NWP in-
formation (Figs. 7 and 8). The SBS analysis shows that the fu-
sion CO2 channels do not substantially reduce model error
when included. However, their inclusion is suggested to re-
duce the reliance on NWP information. This is an important
point since it can change how much a given CTP prediction
depends on observations, as compared with ancillary informa-
tion from an NWP model forecast. When included in climate
records, changing the source of the ancillary NWP data can
yield small but meaningful changes in the variability of cloud
properties estimated from imagers (Foster et al. 2016). Thus,
the physical interpretation CTP estimates can change depend-
ing on the reliance on NWP information.

Other difficulties include directly comparing results from
the VIIRS and ABI CTP models. Even though spatial metrics
are both computed over 5 3 5 pixel arrays, these metrics have
different meanings for each sensor. This is due to differing
spatial resolutions between sensors and the fact that the

spatial resolution of VIIRS varies less at higher viewing an-
gles, because of the aggregation of pixels at lower viewing an-
gles. The spatial resolution of ABI varies much more
considerably. Thus, the physical meaning of these metrics is
likely very different between the two instruments.

It is interesting to compare results of this analysis with the
physical information exploited in approaches like CO2 slicing.
CO2 channels do not seem to add much value to a model that
already has access to infrared window channels including a
channel around 8.6 mm. There is more value in including
channels with lower- and midlevel water vapor absorption,
such as the 6.7 and 7.3 mm. However, it is not clear if this ob-
servation holds for imagers, such as MODIS, which have na-
tive channels in these spectral regions, rather than inferred
channels from sounder observations in the case of our VIIRS
neural network. Despite this caveat, most of the feature im-
portance metrics used in this analysis imply that not exploiting
variability of the 8.6-mm or infrared window channels be-
tween 10 and 12 mm will yield a suboptimal result.

The LRP clustering analysis suggests that these models
have the capacity to handle CTP predictions for certain types
of clouds differently. This is represented by how identified
clusters vary with cloud-top phase, opacity, location, and the
features used to make a particular prediction. This is an intui-
tive result, since knowledge of cloud-phase may narrow the
range of plausible CTP values. Similarly, knowledge of the
opacity of a cloud may inform the NN about the contribution
to top-of-atmosphere brightness temperatures from sources
below the cloud.

Throughout this work, we note substantial variability in
model explanations between sensors and minor differences
between random initializations. We stress that even if two
CTP NNs for different sensors are trained to match observa-
tions from CALIOP, it is unlikely that their local explanations
are similar. Our results might not be applicable to other imager–
lidar pairings. This has implications for transitioning ML-based
approaches to climate records made up of multiple sensors such
as VIIRS and MODIS, in which it may be desirable for models
for each sensor to have similar explanations in addition to sim-
ilar predictions for a given example. We suspect that some dif-
ferences in this analysis come from the fact that VIIRS views a
wider range of meteorological conditions. Additionally, our
ABI/CALIOP testing dataset is only valid for the last three
months of the year, and our VIIRS/CALIOP collocations are
collected over an entire year.

As previously mentioned in section 4, much of the difficulty
in interpreting the results of this analysis comes from use of
correlated features. One approach we experimented with in
order to ease the interpretation of this analysis was to add L1
and L2 regularization to the parameters of each layer in our
models. L1 regularization acts to penalize the magnitude of
the parameters of the model and L2 regularization penalizes
the squared magnitude of the parameters. Our hypothesis was
that by adding this kind of regularization, the models would
be incentivized to rely on a smaller subset of features and
ease the interpretation of the results. However, we found that
regularization with small L1 and L2 penalties had almost no
impact on the relative feature importance from LRP and
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SHAP. Larger L1 and L2 penalties decreased the perfor-
mance of these models to unacceptable levels and increased
the impact of different random weight initializations. Thus,
we have not included these models as a part of the analysis.

Despite the wealth of information provided by the explain-
ability methods used in this analysis, many questions about
how particular features are used in CTP models remain unan-
swered. For example, Why are the 11.2- and 12.3-mm channels
favored over the 10.3-mm channel on ABI, which has less
water vapor absorption? Similar questions can be asked about
why spatial metrics from one channel might be favored over
others or why upper-level water vapor absorption is relatively
unimportant for ABI CTP estimation. This analysis gives us
an overall idea about which features are useful for an NN, but
the task of model interpretation is now shifted to attributing
physical significance to these results. Difficulties in attributing
physical significance are enhanced by the fact that there is dis-
agreement between explainability approaches. This motivates
future work in verifying local explanations, such as the com-
parison in Mamalakis et al. (2021), where ground-truth ex-
planations are available.

6. Conclusions

We characterize the use of individual channels of LEO and
GEO imagers for NN CTP estimation. We first perform a
short comparison between our NNs and an operational ap-
proach that demonstrates large improvement in CTP estima-
tion with respect to CALIOP. We then use backward
selection, LRP, and SHAP to infer the relative importance of
features. We find many instances of disagreement between
these different perspectives on feature importance, but broad
agreement on the importance of a few channels, including the
VIIRS 8.4-mm channel (8.6 mm for ABI) and other infrared
window channels around 10–12 mm. We also observe a small
benefit in including absorption channels that are sensitive to
midlevel and lower-level water vapor. VIIRS–CrIS fusion
CO2 channels and spatial metrics derived from them appear
add little to no improvement to CTP models where native in-
frared channels are already present but have impact on the re-
liance of a given model on NWP model output. Clustering
local explanations from LRP illustrates how NN models can
exploit variability related to CTP, phase, and opacity from
infrared measurements. The LRP clustering also suggests,
intuitively, that the NNs use different infrared channel com-
binations for estimating CTP of the different cloud types.
While this analysis reveals several interesting aspects of the
relative importance of infrared channels for CTP estima-
tion, this work also illustrates the immense challenge of at-
tributing physical significance to both global and local
explanations for neural networks.
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